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Growth of a tensionless interface in anisotropic random media
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We introduce a simple growth model where a tensionless interface grows in random media. In this model,
the degree of anisotropy of the random media is controlled by a variableg. Wheng50, there is no anisotropic
property of the random media. But, the anisotropic property increases asg does from 0. From the numerical
simulations, we find that this model belongs to the quenched Herring-Mullins universality class wheng50.
Interestingly, however, we find that this model belongs to the quenched Kardar-Parisi-Zhang universality class
wheng is nonzero.
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The study of a growing interface in random media h
been a popular research topic for the last 20 years becau
relates to various physical systems such as interface gro
in porous media@1,2#, charge density waves under extern
fields @3–5#, fluid imbibition in paper@6#, driven flux motion
in type-II superconductors@7,8#, etc.

The growth velocity of an interface driven in random m
dia is determined by an external driving forceF. The growth
velocity is zero when the driving forceF is smaller than the
pinning strength induced by the quenched disorder of
random media. There exists a threshold of the driving fo
Fc above which the interface moves with a constant veloc
Accordingly, the velocity is zero forF,Fc , and it is non-
zero for F.Fc . This phenomenon is called the pinnin
depinning~PD! transition. Near the depinning threshold, t
depinned interface shows nontrivial scaling behavior in
global interface width@9#,

W~L,t !5K 1

Ld8 (
x

@h~x,t !2h̄~ t !#2L 1/2

, ~1!

whereh(x,t) is the height of the interface at positionx and
time t. L, d8, and h̄ denote the system size, the substr
dimension, and the mean height, respectively. The interf
width scales as

W~L,t !;H tb if t!Lz

Lz if t@Lz.
~2!

The exponentsz, b, and z are called the roughness, th
growth, and the dynamic exponents, respectively. These
ponents are related byzb5z. It is well known @9# that the
dynamical behaviors of the fluctuating interfaces can be c
sified into a finite number of universality classes by the
ponentsz, b, andz.

The driven interface in random media shows different d
namical behavior according to the property of the rand
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media@9,10#. In isotropic random media, the growth veloci
of a driven interface does not depend on the slopes of a
tilted substrate near the depinning threshold or becomes
dependent ofs at the depinning threshold although there
the dependence of the growth velocity ons far from the
depinning threshold. In anisotropic random media, howev
the growing velocity of a driven interface depends ons even
at the depinning threshold. There have been many stu
about the dynamical behavior of a driven interface
isotropic/anisotropic random media, where the growth of
interface is affected by interface tension@9#. Recently two
independent studies about the growth of a tensionless in
face driven in isotropic random media are also repor
@11,12#, but there has been no study in anisotropic rand
media. It would be thus interesting to study the growth o
tensionless interface driven in anisotropic random media
to classify the universality class of the dynamics.

Depinning dynamics of a driven interface in isotropic ra
dom media can be explained by a Langevin-type continu
equation, the quenched Edwards-Wilkinson~QEW! equation
@9,13#,

]h~x,t !

]t
5n¹2h~x,t !1h~x,h!1F, ~3!

wheren¹2h(x,t) describes the smoothening effect of inte
face tension.h(x,h) is a quenched noise witĥh(x,h)&50
and ^h(x,h)h(x8,h8)&52Ddd8(x2x8)d(h2h8). The
quenched noise term describes a random force by isotr
quenched disorder in random media. The QEW equa
shows a PD transition. In the QEW equation, the grow
velocity of the interface near the depinning threshold do
not depend on the slope of a tilted substrate.

A few years ago, Parket al. @14# studied the interface
growth in random media with a simple growth model mim
icking the interface growth at the depinning threshold. T
growth rule of the model is defined as follows.

~i! A random number between 0 and 1 is assigned on e
lattice site in one-dimensional system, where the rand
numbers represent impurities of random media.
©2004 The American Physical Society02-1
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~ii ! At each timet, the local forcef i(t) is calculated for
each sitei,

f i~ t !5hi 11~ t !22hi~ t !1hi 21~ t !1m@11gsl~ i !#h i ,hi
,
~4!

wherem andg are integers.hi(t) denotes the height at tim
t and a sitei. h i ,hi

denotes the random number at a sitei and

the heighthi . The local slope issl( i )51 only whenhi 11
2hi.0 or hi 212hi.0, otherwisesl( i )50. When g50,
there is no anisotropic property of the random media. Bu
g increases from 0, the degree of the anisotropic prop
increases.

~iii ! The column having the maximumf max[max@fi#
among allf i increases as follows:

hi~ t11!5hi~ t !11 if f i5 f max,

hi~ t11!5hi~ t ! otherwise. ~5!

In this model, the interface tends to grow faster at the
where the local slopesl is 1 wheng.0. The dynamical
behavior of the interface in this model is affected by t
slopes of the tilted substrate ifg.0. The movement of the
driven interface in this model can be described by the E
equation with general type of a quenched noise term ins
of an isotropic quenched noise term,

]h~x,t !

]t
5n¹2h~x,t !1h̃~x,h!1F, ~6!

where the generalized quenched noise satisfies the co
tions, ^h̃(x,h)&50 and ^h̃(x,h)h̃(x8,h8)&52D@1
1 f (sl)#dd8(x2x8)d(h2h8). Here, f (sl) is a function de-
pending on the local slopesl . It was shown by simple cal
culation that the growth velocity of Eq.~6! at the depinning
threshold depends on the slopes of the tilted substrate. Par
et al. showed from computer simulations that their mod
exhibits the same dynamical scaling behavior at the de
ning threshold forg.0 as the quenched Kardar-Paris
Zhang~QKPZ! equation@9,15#,

]h~x,t !

]t
5n¹2h~x,t !1

l

2
@“h~x,t !#21h~x,h!1F. ~7!

The QKPZ equation shows a PD transition. The interfa
velocity at the depinning threshold in the QKPZ equati
depends on the slopes of the tilted substrate because of th
second term on the right-hand side in Eq.~7!.

The depinning dynamics of a driven tensionless interf
in isotropic random media can be well explained by
Langevin-type continuum equation, the quenched Herri
Mullins ~QHM! equation@16#,

]h~x,t !

]t
52k¹4h~x,t !1h~x,h!1F. ~8!
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From the numerical studies@11,12#, it was known that the
QHM equation shows different dynamical behavior at t
depinning threshold from that of the QEW and the QKP
equations.

In this paper, we introduce a simple self-organized a
tomaton model~SOAM!, which mimics the growth of a
driven tensionless interface in anisotropic random media
the depinning threshold. In this model, one can control
degree of the anisotropy of the medium.

The growth rule of our model is as follows. First, w
assign a random number between 0 and 1 on each lattice
in one-dimensional system, where the random numbers
resent the impurities of random media. Second, at each
date, we calculate the local force for each sitei,

f i52k~hi 1224hi 1116hi24hi 211hi 22!

1@11gsl~ i !#h i ,hi
, ~9!

wherek andg are integers.h i ,hi
denotes the random numbe

at a sitei and the heighthi . L updates correspond to a tim
increment of 1. The local slope issl( i )51 only whenhi 11
2hi.0 or hi 212hi.0, otherwise sl( i )50. Third, the
growth process of the interface is the same as Eq.~5!.

Wheng50, the dynamical behavior of the model is we
described by the QHM equation with an isotropic quench
noise term at the depinning threshold. The obtained rou
ness exponent isz52.28(5) for k50.1 andg50 ~see the
inset of Fig. 2!. Through some simulations for different va
ues ofk, we found that the value of the roughness expon
does not depend on the value ofk. Therefore, we used a
fixed valuek50.1 in our simulations. Our SOAM model ca
be described generally by the following continuum equat
at the depinning thresholdF5Fc :

]h~x,t !

]t
52k¹4h~x,t !1h̃~x,h!1F. ~10!

We carried out computer simulations of our SOAM mod
for g520, 40, 60, 80, and 100. Numerical data were av
aged typically over more than 200 configurations. In order
obtain the growth exponentb, we measured the time
dependent behavior of the interface widthW(L,t) starting
from an initially flat interface. As shown in Fig. 1, the valu
of the growth exponentb decreases asg increases. We plot
the growth exponentb versus 1/g in the inset of Fig. 1. We
found that the value ofb approaches 0.66~2! as 1/g does 0.
The valueb50.66(2) is in good agreement with that in th
QKPZ universality class@9,17#

Wheng50, we could not measure the reliable value ofb
since it varies as time goes on. We thus tried to estimatb
from the saturated interface width@17#. If the width of the
interface is saturated at timets , the new interface heigh
h̃i(t) is defined ashi(t1t)2hi(t), wheret.ts . The inter-
face width obtained fromh̃i(t) shows the scaling behavio
W(L,t);tbs before saturation. We obtainedbs50.75(1),
which is in good agreement with the result obtained from
previous study about the QHM equation with an isotrop
quenched noise term@12#.
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In order to obtain the roughness exponent, we plot
saturated value ofW2(L) versus the system sizeL in double
logarithmic scales in Fig. 2. We obtainedz52.28(5) in the
QHM universality class wheng50 ~see the inset of Fig. 2!
and z50.64(1) in the QKPZ universality class wheng
>80 @9,17#. Although we could not estimate the corre
value of the roughness exponentz for g510, 20, 40, and 60
because of crossover behavior, we found that the local s
of the interface width decreases from large value and
proaches 0.64 as the system size increases.

We also measure the height-height correlation funct
C(x) defined as

FIG. 1. The plots of the interface width as a function of time f
g520, 40, 60, 80, and 100 with the system sizeL516 384. The
slopes of two dashed lines are for 2b51.60 and 1.40 forg520 and
100, respectively. Inset: The plot ofb as a function of 1/g for g
540, 60, 80, 100, and 200.b approaches 0.66 as 1/g does 0.

FIG. 2. The plots ofW2(L) at the saturated regime as a functio
of L in double logarithmic scales are shown forg510, 20, 40, 60,
80, and 100 from top to bottom. The system sizesL532, 64, 128,
256, 512, 1024, 2048, 4096, 8192, and 16 384. The dashed g
lines are for 2z51.28. Inset: The plot ofW2(L) at the saturated
regime vsL for the system sizesL532, 64, 128, and 256 wheng
50. The slope of the straight line is 2z54.56.
01160
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C~x!5K 1

Ld8 (
x

@h~x1x1 ,t!2h~x1 ,t!#2L 1/2

, ~11!

wheret is larger than the saturation timets andC(x) scales
asxz8. The value of the roughness exponent measured f
C(x) is z851.00(1) wheng50 and z850.64(1) wheng
510 ~see Fig. 3!. The values ofz8 obtained wheng50 and
10 are in good agreement with those in the QHM and
QKPZ universality class, respectively. Wheng50, the value
of z8 is smaller thanz52.28 obtained from the interfac
width. It is well known that the anomalous scaling of th
local width is due to the superroughening@18,19#, in such a
way that the roughness exponentz8 obtained from the
height-height correlation function is smaller thanz obtained
from the saturated value ofW2(L,t). The superrough scaling
occurs only when the roughness exponentz is larger than 1.
Therefore, the two roughness exponentsz and z8 have dif-
ferent values atg50. Wheng.0 andL is large, the super-
rough scaling behavior does not appear becausez is smaller
than 1, i.e.,z85z. Wheng510 andL54096, the roughness
exponentz8 shows a crossover behavior fromz8.0.64 for
small values ofx to z850.64(1) for the large values ofx.
This result supports the fact that our model hasz5z8
50.64(1) wheng.0 and so belongs to the QKPZ unive
sality class.

The relaxation function method is known to be useful f
measuring the dynamic exponentz independently@12,20#.
We prepare a sinusoidal initial interface described as

h~x,0!5A sin~2px/ l !, ~12!

whereA and l are the amplitude and the wavelength, resp
tively. The interface evolves following the growth rule of ou
SOAM model on this initial interface. When an interfac
grows, we measure the normalized relaxation funct
R(t,l ). R(t,l ) is defined as

ide

FIG. 3. The plot of the height-height correlation functionC2(x)
vs x is shown forg50 ~top! andg510 ~bottom! with the system
sizesL5256 and 4096, respectively. The top straight line represe
2z852 and the bottom does 2z851.28.
2-3
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R~ t,l !5CA~ t,l !/CA~0,l !, ~13!

whereCA(t,l ) is an autocorrelation function of the heigh
defined byCA(t,l )5^h(x,0)h(x,t)&. R(t,l ) follows the scal-
ing form

R~ t,l !; f ~ t/ l z!, ~14!

wheref is a universal scaling function.R(t,l ) is shown in the
inset of Fig. 4, whereR(t,l ) was measured wheng510 and
L58192. All curves collapse well into a universal curv
with z50.98(2) as shown in Fig. 4. We also obtained t
same result forg>20. According to the scaling relationzb
5z, one can find that the growth exponentb for g510 is

FIG. 4. The data collapse of the relaxation functions shown
the inset withz50.98 whenL58192. Inset : The relaxation func
tion R(t,l ) vs t for l 532, 64, 128, 256, and 512 from the left.
b,

.

d

01160
0.65~3! from z50.98(2) andz50.64(1). This result is also
in good agreement with that of the previous studies about
model in the QKPZ universality@9,17#. In our SOAM model,
the interface tends to grow faster at the sitei where the local
slopesl( i ) of the interface is nonzero. Therefore, the inte
face growth in this model is affected by the slopes of the
tilted substrate. Such slope dependence is known to ind
the KPZ nonlinear term during the interface growth@14#, i.e.,
]h(x,t)/]t;l/2(“h)2. The interface in our model tends t
grow well at the sitei where the random number is sma
This effect plays a role of the isotropic quenched noise te
during the interface growth@14#, i.e., ]h(x,t)/]t;h(x,h).
The interface in our model also tends to grow well at the s
i where the conditionhi 1122hi1hi 215¹2hi.0 is satis-
fied. This type of updates makes the surface tension ef
occur during the interface growth, i.e.,]h(x,t)/]t
;¹2h(x,t) @21#. Therefore, the dynamical behavior of ou
model for g.0 can be described effectively by the co
tinuum equation

]h~x,t !

]t
5n¹2h2k¹4h1

l

2
~“h!21h~x,h!1F, ~15!

where the termsn¹2h, (l/2)(¹h)2, andh(x,h) are effec-
tively induced from the anisotropic quenched noiseh̃(x,h).
In the above equation, the effect of the term2k¹4h(x,t) in
dynamical scaling behavior does not appear in the large
tem because of the surface tension termn¹2h(x,t) @21#. The
dynamical behavior in the growth of a tensionless interfa
in anisotropic random media is determined by three ter
n¹2h, (l/2)(“h)2, andh(x,h). Therefore, the dynamics o
the tensionless interface driven in anisotropic random me
belongs to the QKPZ universality class.
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