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Growth of a tensionless interface in anisotropic random media
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We introduce a simple growth model where a tensionless interface grows in random media. In this model,
the degree of anisotropy of the random media is controlled by a vaigabitheng=0, there is no anisotropic
property of the random media. But, the anisotropic property increasgsiass from 0. From the numerical
simulations, we find that this model belongs to the quenched Herring-Mullins universality clasggw#tten
Interestingly, however, we find that this model belongs to the quenched Kardar-Parisi-Zhang universality class
wheng is nonzero.
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The study of a growing interface in random media hasmedia[9,10]. In isotropic random media, the growth velocity
been a popular research topic for the last 20 years becauseoit a driven interface does not depend on the slep# a
relates to various physical systems such as interface growtiited substrate near the depinning threshold or becomes in-
in porous medid1,2], charge density waves under externaldependent of at the depinning threshold although there is
fields[3-5], fluid imbibition in pape 6], driven flux motion  the dependence of the growth velocity enfar from the
in type-Il superconductor’,8], etc. depinning threshold. In anisotropic random media, however,

The growth velocity of an interface driven in random me- the growing velocity of a driven interface dependssaven
dia is determined by an external driving foreeThe growth  at the depinning threshold. There have been many studies
velocity is zero when the driving forcde is smaller than the about the dynamical behavior of a driven interface in
pinning strength induced by the quenched disorder of thésotropic/anisotropic random media, where the growth of the
random media. There exists a threshold of the driving forcenterface is affected by interface tensif®]. Recently two
F . above which the interface moves with a constant velocityindependent studies about the growth of a tensionless inter-
Accordingly, the velocity is zero foF<F., and it is non- face driven in isotropic random media are also reported
zero for F>F_. This phenomenon is called the pinning- [11,12, but there has been no study in anisotropic random
depinning(PD) transition. Near the depinning threshold, the media. It would be thus interesting to study the growth of a
depinned interface shows nontrivial scaling behavior in thgensionless interface driven in anisotropic random media and
global interface widtH9], to classify the universality class of the dynamics.

Depinning dynamics of a driven interface in isotropic ran-
1 _ 12 dom media can be explained by a Langevin-type continuum
W(L,t)= X3 EX: [h(x,t)=h(t)]*) (1) equation, the quenched Edwards-Wilking@EW) equation
[9!13]1

whereh(x,t) is the height of the interface at positierand

time t. L, d’, andh denote the system size, the substrate Jh(x,t)
dimension, and the mean height, respectively. The interface ot
width scales as

=vV2h(x,t)+ n(x,h) +F, (3

s , where »V2h(x,t) describes the smoothening effect of inter-
7o <L @ face tensionz(x,h) is a quenched noise withy(x,h))=0
LS if t>L2 and (7(x,h)n(x’,h"))=2Ds"(x—x')é(h—h’). The
quenched noise term describes a random force by isotropic
The exponents], 8, and z are called the roughness, the quenched disorder in random media. The QEW equation
growth, and the dynamic exponents, respectively. These exhows a PD transition. In the QEW equation, the growth
ponents are related yB=¢. It is well known[9] that the  velocity of the interface near the depinning threshold does
dynamical behaviors of the fluctuating interfaces can be clasot depend on the slope of a tilted substrate.
sified into a finite number of universality classes by the ex- A few years ago, Parlet al. [14] studied the interface
ponents{, B, andz growth in random media with a simple growth model mim-
The driven interface in random media shows different dy-icking the interface growth at the depinning threshold. The
namical behavior according to the property of the randonmgrowth rule of the model is defined as follows.
(i) Arandom number between 0 and 1 is assigned on each
lattice site in one-dimensional system, where the random
*Corresponding author. Electronic address: imkim@korea.ac.kr numbers represent impurities of random media.

W(L,t)~{
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(ii) At each timet, the local forcef;(t) is calculated for
each sitd,

fi()=hi ()= 2hi() +hi (1) +mM[1+95(i) 17 n,
4)

wherem andg are integersh;(t) denotes the height at time
t and a sitd. 7 h, denotes the random number at a sigand

the heighth;. The local slope is(i)=1 only whenh;,
—h;>0 or h;_;—h;>0, otherwises,(i)=0. Wheng=0,

there is no anisotropic property of the random media. But ag,
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From the numerical studigd1,12, it was known that the
QHM equation shows different dynamical behavior at the
depinning threshold from that of the QEW and the QKPZ
equations.

In this paper, we introduce a simple self-organized au-
tomaton model(SOAM), which mimics the growth of a
driven tensionless interface in anisotropic random media at
the depinning threshold. In this model, one can control the
degree of the anisotropy of the medium.

The growth rule of our model is as follows. First, we
assign a random number between 0 and 1 on each lattice site
one-dimensional system, where the random numbers rep-

g increases from 0, the degree of the anisotropic propertygsent the impurities of random media. Second, at each up-

increases.

(i) The column having the maximuni,=maxf;]
among allf; increases as follows:

hi(t+1)=h;(t)+1 if

fi=Tfmax

hi(t+1)=h;(t) otherwise. (5)

In this model, the interface tends to grow faster at the sit
where the local slope; is 1 wheng>0. The dynamical
behavior of the interface in this model is affected by the
slopes of the tilted substrate if>0. The movement of the

driven interface in this model can be described by the E

equation with general type of a quenched noise term instea'q

of an isotropic quenched noise term,

dh(x,t)
ot

=vV2h(x,t)+ 7(x,h) +F, (6)

e

date, we calculate the local force for each sjte
fi=—k(hi12—4h;, 1 +6h—4h_;+h;_5)

+[1+gs(D)] 70, ©

wherek andg are integersni,hi denotes the random number

at a sitei and the heighhb; . L updates correspond to a time
increment of 1. The local slope &(i)=1 only whenh;
—h;>0 or h;_;—h;>0, otherwises|(i)=0. Third, the
growth process of the interface is the same as(kg.
Wheng=0, the dynamical behavior of the model is well

V\Pescribed by the QHM equation with an isotropic quenched

noise term at the depinning threshold. The obtained rough-
ess exponent i§=2.28(5) fork=0.1 andg=0 (see the
inset of Fig. 2. Through some simulations for different val-
ues ofk, we found that the value of the roughness exponent
does not depend on the value of Therefore, we used a
fixed valuex=0.1 in our simulations. Our SOAM model can

be described generally by the following continuum equation

where the generalized quenched noise satisfies the condit the depinning threshold=F,:

tions, (7(x,h))=0 and (Z(x,h)7(x’.h"))=2D[1
+f(s,)]5d'(x—x’)6(h—h’). Here, f(s)) is a function de-
pending on the local slopg . It was shown by simple cal-
culation that the growth velocity of E@6) at the depinning
threshold depends on the slopef the tilted substrate. Park
et al. showed from computer simulations that their model

exhibits the same dynamical scaling behavior at the depin

ning threshold forg>0 as the quenched Kardar-Parisi-
Zhang(QKPZ) equation[9,15],

dh(x,t)
ot

=pV2h(x,t)+ %[Vh(x,t)]2+ n(x,h)+F. (7)

dh(x.t)
ot

«kV*h(x,t) +7(x,h)+F. (10)

We carried out computer simulations of our SOAM model
for g=20, 40, 60, 80, and 100. Numerical data were aver-
aged typically over more than 200 configurations. In order to
obtain the growth exponenB, we measured the time-
dependent behavior of the interface widtf(L,t) starting
from an initially flat interface. As shown in Fig. 1, the value
of the growth exponenB decreases ag increases. We plot
the growth exponenB versus 1g in the inset of Fig. 1. We
found that the value oB approaches 0.68) as 1{ does 0.

The valueB=0.66(2) is in good agreement with that in the

The QKPZ equation shows a PD transition. The interfaceQKPZ universality clas§9,17]

velocity at the depinning threshold in the QKPZ equation
depends on the slopeof the tilted substrate because of the
second term on the right-hand side in Eg).

Wheng=0, we could not measure the reliable valugof
since it varies as time goes on. We thus tried to estingate
from the saturated interface widfii7]. If the width of the

The depinning dynamics of a driven tensionless interfacenterface is saturated at timg, the new interface height
in isotropic random media can be well explained by ah,(t) is defined as,(t+7)—h,(7), wherer>t. The inter-

Langevin-type continuum equation, the quenched Herring
Mullins (QHM) equation[16],

Jh(x,t) 3
at

— — kV4h(x,t) + 5(x,h) +F. (8)

face width obtained fronh;(t) shows the scaling behavior
W(L,t)~tPs before saturation. We obtaingfl,=0.751),
which is in good agreement with the result obtained from the
previous study about the QHM equation with an isotropic
guenched noise terfii2].
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FIG. 1. The plots of the interface width as a function of time for
g=20, 40, 60, 80, and 100 with the system size 16 384. The
slopes of two dashed lines are fo82 1.60 and 1.40 fog=20 and
100, respectively. Inset: The plot @ as a function of I for g
=40, 60, 80, 100, and 20@® approaches 0.66 asgltloes O.

In order to obtain the roughness exponent, we plot the

saturated value olV?(L) versus the system sizein double
logarithmic scales in Fig. 2. We obtainée-2.28(5) in the
QHM universality class wheg=0 (see the inset of Fig.)2
and {=0.64(1) in the QKPZ universality class when
=80 [9,17]. Although we could not estimate the correct

of the interface width decreases from large value and a
proaches 0.64 as the system size increases.

We also measure the height-height correlation functio
C(x) defined as
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FIG. 2. The plots ofA%(L) at the saturated regime as a function
of L in double logarithmic scales are shown fp# 10, 20, 40, 60,
80, and 100 from top to bottom. The system sikes32, 64, 128,

n
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FIG. 3. The plot of the height-height correlation functiGA(x)
vs x is shown forg=0 (top) andg= 10 (bottom) with the system
sizesL =256 and 4096, respectively. The top straight line represents
2!’ =2 and the bottom does{2=1.28.

1 1/2
C(X):<Ldr§[h(x+xlv7')h(xluT)]2> (1D

where is larger than the saturation timgand C(x) scales
asx?’. The value of the roughness exponent measured from
C(x) is {'=1.00(1) wheng=0 and{’'=0.64(1) wheng
=10 (see Fig. 3. The values of’ obtained wherg=0 and

o are in good agreement with those in the QHM and the

pQKPZ universality class, respectively. Whge 0, the value

of /' is smaller than/=2.28 obtained from the interface
width. It is well known that the anomalous scaling of the
local width is due to the superroughenifi,19, in such a
way that the roughness exponetit obtained from the
height-height correlation function is smaller tharobtained
from the saturated value /(L ,t). The superrough scaling
occurs only when the roughness exponérig larger than 1.
Therefore, the two roughness exponefitand ¢’ have dif-
ferent values ag=0. Wheng>0 andL is large, the super-
rough scaling behavior does not appear becdusesmaller
than 1, i.e.{'=¢. Wheng= 10 andL =4096, the roughness
exponent/’ shows a crossover behavior frofn>0.64 for
small values ofx to {'=0.64(1) for the large values of
This result supports the fact that our model has ¢’
=0.64(1) wheng>0 and so belongs to the QKPZ univer-
sality class.

The relaxation function method is known to be useful for
measuring the dynamic exponentindependently{12,2Q.
We prepare a sinusoidal initial interface described as

h(x,0)=Asin(2mx/l), (12

whereA and| are the amplitude and the wavelength, respec-

256, 512, 1024, 2048, 4096, 8192, and 16 384. The dashed guid&/ely. The interface evolves following the growth rule of our

lines are for Z=1.28. Inset: The plot ofV?(L) at the saturated
regime vsL for the system sizek =32, 64, 128, and 256 when
=0. The slope of the straight line is{24.56.

SOAM model on this initial interface. When an interface
grows, we measure the normalized relaxation function
R(t,1). R(t,l) is defined as
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A B B 0.653) from z=0.98(2) and,=0.64(1). This result is also
1.0F <« 4 <aqa N in good agreement with that of the previous studies about the

L _ model in the QKPZ universalit}9,17]. In our SOAM model,

0.8 B the interface tends to grow faster at the sitehere the local
) slopes(i) of the interface is nonzero. Therefore, the inter-

' 1.04 o spemepemen . — | face growth in this model is affected by the slopef the
=06 08l ] N tilted substrate. Such slope dependence is known to induce
a3 =06k 1 . the KPZ nonlinear term during the interface groyid], i.e.,

R gak =t i i ah(x,t)/at~N/2(Vh)2. The interface in our model tends to
' & 04 7 grow well at the site where the random number is small.
I 02 - | This effect plays a role of the isotropic quenched noise term
02 oo | | 7 during the interface growth14], i.e., sh(x,t)/at~ n(x,h).
- 1Oo' "'"1"01' 102 103 1 The interface in our model also tends to grow well at the site
0.0k ¢ i i where the conditiorh;,;—2h;+h;_;=V?h;>0 is satis-
T T T fied. This type of updates makes the surface tension effect

102 102 10" 10° occur during the interface growth, i.e.gh(x,t)/dt
Yy lZ ~V?2h(x,t) [21]. Therefore, the dynamical behavior of our
model for g>0 can be described effectively by the con-
FIG. 4. The data collapse of the relaxation functions shown intinuum equation
the inset withz=0.98 whenL =8192. Inset : The relaxation func-

. ah(x,t) A
tion R(t,1) vst for =32, 64, 128, 256, and 512 from the left. — ,V2h— o V4h+ — 2
pn vVeh—kV*h+ 2(Vh) +7(x,h)+F, (15
R(t,1)=Ca(t,/CA(0), (13 where the terms/'V2h, (A/2)(Vh)?, and 5(x,h) are effec-

where C(t,1) is an autocorrelation function of the height, tively induced from the anisotropic quenched noigex,h).

defined byC(t,1) =(h(x,0)h(x,t)). R(t,I) follows the scal- In the gbove equation, th_e effect of the tem?“h(x,t) in
ing form dynamical scaling behavior does not appear in the large sys-

tem because of the surface tension teffith(x,t) [21]. The
R(t,1)~f(t/1%), (14 dynamical behavior in the growth of a tensionless interface

in anisotropic random media is determined by three terms
wheref is a universal scaling functioiR(t,!) is showninthe pV2h, (\/2)(Vh)?, andn(x,h). Therefore, the dynamics of
inset of Fig. 4, wherdk(t,I) was measured whey=10 and  the tensionless interface driven in anisotropic random media
L=8192. All curves collapse well into a universal curve belongs to the QKPZ universality class.
with z=0.98(2) as shown in Fig. 4. We also obtained the This work was supported in part by the Korea Research
same result fog=20. According to the scaling relatiap Foundation Grant No. KRF-2001-015-DP0120, and also in
={, one can find that the growth expongditior g=10 is  part by the Ministry of Education through the BK21 project.
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